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Abstract

Genetic Algorithm (GA), a class of evolutionary algorithms inspired by natural
selection, has been widely applied to complex optimization and search problems. The
University Course Timetabling Problem (UCTP) is a non-deterministic polynomial-time hard
problem that involves assigning lectures to classrooms and timeslots while satisfying numerous
hard and soft constraints. This study proposes an enhanced metaheuristic framework that
integrates a GA with sequential local search and a repair function to efficiently generate
feasible timetables. The GA initializes a population of candidate timetables, evaluates their
fitness, and iteratively evolves them through selection, crossover, and mutation operators. The
sequential local search refines candidate solutions by reducing soft constraint violations, such
as consecutive lectures or sessions scheduled during breaks, while the repair function
guarantees the satisfaction of hard constraints, including classroom capacity and instructor
availability. The proposed framework was implemented in Java IDE 8.1 and evaluated using
multiple benchmark datasets of varying sizes and complexities. Experimental results
demonstrate that the proposed method achieved an overall accuracy of 96.3% and improved
constraint violation reduction by 28.5% compared with existing methods. These findings
confirm the effectiveness of combining GA’s global search capability with local refinement
mechanisms, demonstrating its potential for real-world University scheduling scenarios.

Keywords: Timetable generation, Genetic Algorithm, UCTP, Resources Scheduling.
Introduction

Genetic algorithms (GAs) are adaptive search and optimization techniques
inspired by the principles of natural evolution, such as selection, crossover, and
mutation [1]. First introduced by John Holland in the 1970s, GAs provide a
robust framework for exploring large and complex solution spaces where
conventional methods may fail [2]. They operate on a population of candidate
solutions, evolving them over successive generations based on a fitness measure
that evaluates solution quality. One of the key strengths of GAs is their ability to
balance exploration and exploitation: exploration allows the algorithm to search
diverse regions of the solution space, while exploitation focuses on refining high-
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quality solutions. This makes GAs particularly suitable for combinatorial and NP-
hard problems, including scheduling, resource allocation, vehicle routing, and
optimization in engineering and medicine [3, 4]. Additionally, GAs are flexible in
representing solutions using different encoding schemes, can incorporate domain-
specific knowledge through heuristics, and are capable of handling multiple
objectives and constraints simultaneously. These characteristics make GAs an
effective tool for generating high-quality solutions in complex real-world
problems, such as university course timetabling, where the search space is vast
and constraints are numerous [5].

As the Genetic Algorithm (GA) is a population-based optimization method,
it begins by generating a set of candidate solutions (population), then iteratively
improves them through three main operators: selection, which chooses the fittest
solutions; crossover, which combines parts of two solutions to create new
offspring; and mutation, which introduces small random changes to maintain
diversity. Across successive generations, the algorithm converges toward high-
quality solutions by favoring individuals with better fitness values. GA is widely
used in scheduling and timetabling because it effectively explores large, complex
search spaces and avoids getting trapped in local optima.

Scheduling problems involve the effective allocation of limited resources
to tasks while ensuring that no two tasks use the same resource simultaneously
[6]. University course timetabling, in particular, is recognized as an NP-hard
search problem that cannot be efficiently solved using traditional optimization
techniques such as constraint logic programming, backtracking, or other exact
methods [7]. While these approaches can sometimes reduce constraint violations
and yield feasible timetables, they rarely achieve optimal solutions, especially for
large-scale instances. The University Course Timetabling Problem (UCTP) can
be viewed as a highly constrained problem that can be effectively addressed using
heuristic and metaheuristic methods, particularly genetic algorithms (GAs) [8].
However, GAs typically require longer execution times due to the size and
complexity of the search space. In the literature, a wide range of algorithms has
been proposed for university timetabling, often benchmarked on standard datasets
[9]. Although several approaches have proven effective in reducing soft constraint
violations, relatively fewer methods are capable of consistently reaching globally
optimal or near-optimal solutions for the most challenging instances [10].
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The UCTP can be described as assigning a set of events (lectures) to a set of
limited resources such as classrooms, students, and lecturers. Each event requires
specific resources, occurs at a fixed timeslot, and has a given duration. The
primary objective is to allocate events to resources while ensuring that no two
events share the same resource simultaneously [7]. Fundamentally, UCTP
consists of distributing a set of lectures across a fixed number of classrooms and
timeslots within the academic week, while satisfying multiple constraints. These
constraints are generally categorized into hard constraints, which must always be
satisfied, and soft constraints, whose violations should be minimized [9]. Hard
constraints are considered more critical, as any violation results in an infeasible
timetable. The goal is to design an efficient hybrid algorithm, based on genetic
algorithms and local search that generates timetables satisfying all hard
constraints while minimizing soft constraint violations.

1. Problem Formulation

The UCTP can be formally represented as follows: a set of events (lectures) E -

{el, €2, ..., e, }o be scheduled in 5 days (Week) of 9 periods each, in which
time T = 45 timeslots, set of classrooms R = {r1, r2, . . ., r,,,} each with features
F, set of students S = {s1, s2, ..., sx} and number of lecturers. Five matrices

are used to define the relations of these sets. Student_Event matrix A, to
correlate courses with its attended students. In A, , the value of a; ;is set to 1 if
student i € S is attend event j € E,0 otherwise. Event_Conflict matrixB,, ,, to
identify courses that can be assigned to the same timeslot. Room_Features matrix
to give the features of each classroom, in which the value of a cell C;;is 1ifi € R
has feature j € F, and O otherwise. Event_Features matrix D,, ; to store the features
required by each event that is event i € E needs feature j € F if and only if dij = 1.
Event_Room matrix G, ., lists of classrooms which each event can be assigned.
Additional matrix is used for assigning each course to classroom ri and timeslot
ti. Each pair of (ri, ti) is assigned specified number that correlated to particular
course. If classroom ri in a timeslot ti is free or no course is placed, then the pair
is assigned “-1”.

The solution to UCTP can be seen in a form of an ordered list of pairs (ri, ti), in
which the index of each pair is the id number of a course ei € E (i =1, 2,., n). For
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instance, the time slots and classrooms are allocated to course in an ordered list of
pairs like (2, 4), (3, 5), (1, 12). ., (2, 7) where classroom 2 and timeslot 4 are
allocated to course 1, classroom 3 and timeslot 5 are allocated to course 2, etc. A
feasible solutions is the solutions in which all courses are assigned to appropriate
timeslots, lecturers and classrooms besides satisfying all of the hard and soft
constraints .In the proposed method, we consider the following hard and soft
constraints. Example of a hard constraints (No more than one course is allowed at
one timeslot in each classroom), while (Lecture hours should be scheduled within
the allowed hours) is an example of a soft constraints.

2. Related Works

Genetic algorithms have been extensively studied and applied across
various optimization tasks due to their adaptability and robustness in handling
complex, constrained, and multi-objective problems. Recently, researchers have
continued to enhance GA-based approaches through improving operators as well
as problem specific heuristics to achieve higher performance. This section
reviews recent studies from that demonstrate the diverse applications of GAs,
with a particular focus on university course timetabling and other real-world
optimization problems in scheduling, engineering, and resource allocation. Recent
studies have proposed several improvements and hybrid techniques to enhance
GA performance across various domains, including university timetabling,
scheduling, energy optimization, and healthcare systems. Liu et al. [10] proposed
an adaptive hybrid GA approach for university course timetabling, where
dynamic penalty functions were applied to balance hard and soft constraints.
Their method achieved high feasibility rates and reduced constraint violations
compared to traditional GA models. Also, Om Prakash Verma et al. [11]
presented a hybrid Bacterial Foraging and Genetic Algorithm for optimal
timetable generation. In their approach, bacteria were simulated as candidate
solutions in an n-dimensional search space, while GA operators were used in the
chemotaxis stage to improve solution directionality. The algorithm demonstrated
superior time efficiency and solution quality over standalone GA methods.
Roberts et al. [12] developed a constraint-driven genetic framework for exam
scheduling, introducing a self-repair mechanism to maintain feasibility during
crossover and mutation. Their results showed faster convergence and more
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balanced schedules compared to existing GA-based systems. In another work,
Singh and Kumar in [13] integrated GA with a simulated annealing (SA) strategy
for timetable optimization. The hybrid model effectively minimized both teacher
and room conflicts while optimizing resource utilization.

At other side, recent research has demonstrated the adaptability of GA in
various optimization areas. For example, Chen et al. [14] applied GA for energy-
efficient cloud resource scheduling, reducing power consumption and task delays.
Rahman et al. [15] introduced a GA-based hospital resource management system
to optimize doctor-patient allocation. Their method significantly reduced waiting
times and improved resource distribution. Ali and Zhang in [16] proposed an
enhanced multi-objective GA for vehicle routing problems, integrating adaptive
mutation rates and crowding distance sorting to handle dynamic traffic conditions
efficiently. Meanwhile, Li et al. [17] used a GA for feature selection in deep
learning-based sentiment analysis, achieving improved classification accuracy on
multilingual datasets. Furthermore, Ahmed et al. [18] optimized staff scheduling
in healthcare environments by integrating GA with a fuzzy evaluation module to
balance workloads and preferences. Torres and Delgado in [19] demonstrated the
potential of GA in smart grid optimization, where the algorithm minimized
operational costs while maintaining power stability. These studies collectively
emphasize the versatility of genetic algorithms and the effectiveness of
hybridization in enhancing their convergence speed, accuracy, and applicability
across diverse problem domains.

While previous approaches often focus on improving either genetic operators
or adopting hybrid mechanisms, our method uniquely combines global
exploration via GA, systematic refinement through sequential local search, and a
dedicated repair function that guarantees satisfaction of all hard constraints at
each iteration. This ensures that infeasible timetables produced during evolution
are automatically corrected rather than discarded, significantly improving
convergence stability. Moreover, our framework was rigorously evaluated on
multiple benchmark datasets of varying sizes, and the results demonstrate higher
feasibility, improved accuracy, and lower constraint violations compared with
state-of-the-art methods. These contributions position our study as a practical and
scalable solution for real-world university scheduling environments.
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3.Proposed approach

The university course timetabling problem (UCTP) can be described as
assigning a set of events (lectures) to a set of limited resources such as
classrooms, students, and lecturers. Each event requires specific resources, occurs
at a fixed timeslot, and has a given duration. The primary objective is to allocate
events to resources while ensuring that no two events share the same resource
simultaneously [5]. Fundamentally, UCTP consists of distributing a set of lectures
across a fixed number of classrooms and timeslots within the academic week,
while satisfying multiple constraints. These constraints are generally categorized
into hard constraints, which must always be satisfied, and soft constraints, whose
violations should be minimized [6]. Hard constraints are considered more critical,
as any violation results in an infeasible timetable. The goal is to design an
efficient hybrid algorithm, based on genetic algorithms and local search that
generates timetables satisfying all hard constraints while minimizing soft
constraint violations.

As illustrated in Fig.1. The proposed model integrates a Genetic Algorithm
with a Local Search mechanism and a specialized repair function. The GA serves
as the global search engine, generating diverse candidate timetables and exploring
the solution space through selection, crossover, and mutation. These operators
allow the algorithm to maintain diversity and avoid premature convergence. Once
new offspring are produced, the Local Search mechanism is applied to refine each
candidate solution by systematically reducing soft constraint violations such as
minimizing consecutive lectures, avoiding undesirable time gaps, or improving
classroom utilization. This step ensures that promising solutions are further
improved rather than relying solely on random evolution.

The repair function acts as a feasibility controller, correcting any violations of
hard constraints that arise during GA or local search operations. These hard
constraints include classroom capacity, instructor availability, and conflict-free
scheduling of courses sharing the same student groups. Instead of discarding
infeasible solutions (as done in several traditional GA-based methods), the repair
function adjusts timeslots or room assignments to immediately restore feasibility.
This combination allows the model to maintain a balance between broad
exploration and targeted exploitation. Through this systematic
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interaction among GA, LS, and repair strategies, the model is able to efficiently
allocate events, rooms, and timeslots while minimizing conflicts, producing
highly feasible and high-quality university timetables across different dataset
complexities.

Initial Population Genetic Operation Repair Function Fitness Measure
—_— Crossover Operation
| Chromosome 1 | ——————————
¢ — Parent1 | —® Offspringi i CheckHard ! -
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Fig.1 overall framework of the proposed University Timetable Generation
The UCTP can be formally represented as follows: a set of events (lectures)
E ={eq ey e;3,..,e,} to be scheduled in 5 working days, each consisting of 9
periods, giving a total of T = 45timeslots. A set of classrooms R =
{r,r,1;,.., 1} each defined by a set of features F. A set of students S =
{s1,52,83,..,5;}. In addition to a set of lecturers. To capture the relationships
among these sets, five matrices are defined:

Student_Event matrix A4, ,, indicates which students attend which events. A value
of 1 means student s; € S attends event E; € E, and O otherwise.

Event_Conflict matrix B,, ,, identifies events that cannot be assigned to the same
timeslot.

Room_Features matrix — specifies the features of each classroom. A value of 1
indicates classroom r; € R has feature F; € F, otherwise 0.

Event_Features matrixD,, ; defines the features required for each event. Event

e; € E requires feature f; € F ifand only if dj; = 1.
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Event_Room matrix G, ,, lists the rooms in which each event can be assigned.

A mapping matrix is used to assign each event e; to a pair(r; t;), representing its
allocated classroom and timeslot. If a (classroom, timeslot) pair is unoccupied, it
Is assigned -1. The solution to the UCTP can therefore be represented as an
ordered list of pairs (r; t;) where the index corresponds to the event identifier
e; : E(1=1,2,3,. ,n). For example, the assignment (2,4),(3,30),...,(2,7)
indicates that course 1 is placed in classroom 2 at timeslot 4, course 2 in
classroom 3 at timeslot 30, and so on. The quality of a timetable S is evaluated by
the objective function in Equation (1):

fs): = hev(s) X C + scv(s) (1)
Where hcv(s) and scv(s) represent the number of hard and soft constraint
violations, respectively, and C is a constant larger than the maximum possible
number of soft constraint violations. A feasible timetable is one that satisfies all
hard constraints, while minimizing the number of soft constraint violations.

Hard constraints Soft constraints
Student batch cannot be assigned more Lecture hours should be scheduled within
than one course at the same time the allowed hours
Classroom must satisfy the features Lecturers don’t like to be assigned two
required by the course (capacity). classes consecutively
No more than one course is allowed at The lectures cannot be assigned to
one timeslot in each classroom timeslots in the breaks timeslots
A lecturer must not be assigned more One lecture should be scheduled ones in
than one class at the same time a week for one course

The algorithm starts by preparing the generation counter with K= 0 and
generating an initial population Pop (K). Each individual in the population is
evaluated according to the defined fitness function. The evolutionary process then
iteratively proceeds until the termination condition is satisfied. At each iteration,
recombination operators are applied to Pop (K) to generate a set of offspring. A
new population Pop (K+1) is subsequently formed by selecting individuals from
both the parent and offspring populations, ensuring that high-quality solutions are
retained. The generation counter is then incremented, and the cycle continues.
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The procedure terminates once the stopping criterion is reached, and the best
solution obtained is reported as the final output as shown in Algorithm 1.
Algorithm 1: Psudocode for GA process

Begin

K = 0; initialize Pop (k);

Evaluate Pop (k);

While (k < MaxGenerations AND nolmprovement < StoppingThreshold) do

Recombine Pop (k) to generate Offspring (k);

Select Pop (k+1) from Pop (K) then

Offspring (K);

k=k+1

End while

End

Note that: MaxGenerations is the maximum number of iterations allowed and
StoppingThreshold is number of consecutive generations with no fitness
improvement.
3.1 Local Search
Genetic algorithm can produce more better quality solutions if incorporated with
local search rather than using genetic algorithms alone [5]. In our approach, a
sequential search algorithm is applied to produce more optimal solutions
(timetable) by reducing the number of soft constraint violations, thus, making the
selection process faster. Local search pseudo code is presented in Algorithm. 2.
Algorithm .2. Pseudo Code for local search

Input: Feasible Course Timetable (FCT)

Begin

For 1 = 1to N, where N is the number of events

ForJ=1to T, where T is the number of timeslots

Assign timeslot J for each class |

IF FCT improved

FCT[I][2] =J

Break

End IF

End for
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End for
End
Output: improved feasible Course Timetable

As illustrated in Fig. 1. We applied local search before moving to the next
generation. The result of the local search is returned to the GA to move to the
next generation. Referring to Fig. 1, initially a conflict array with NxN
dimensions is created to perform conflict checking and to avoid the number of
students as a factor in the complexity of the problem.

3.2 Chromosome Representation

The initial population is constructed using a constructive heuristic approach. Each
timetable begins as an empty schedule, and feasible timetables are generated by
iteratively adding or removing appropriate courses based on classroom
availability. This process continues until all hard constraints are satisfied, while
soft constraint violations are disregarded at this stage. Each generated
chromosome represents a candidate timetable, serving as a fundamental building
block of the population. The population size (N) corresponds to the number of
generated timetables, and the length of each chromosome equals the total number
of courses to be scheduled. Each gene within a chromosome encodes the timeslot
assignment fora specific course or event. Fig.2. illustrates the overall
chromosome structure, while Fig.3. shows the detailed information encoded
within each chromosome.

|l Chromosome { ‘ Gene [0] Gene [1] Gene[f] |..| Gene[L)

‘ Chmmnmmel‘ Gene[t] ||| Geneft] ||| Genepy |..| Genepy

Gene [0] Gene [1] Gene[2] |.. | Gene[l]

‘l Chromosome P ‘

Timeslot

Fig. 2. Timetable Genetic Representation

Abubakr H.Ombabi, Mohamed Babiker Ali, Mussab E.A Hamza, Abuzer H. I
Ahmed,(2025), An Enhanced Metaheuristic Framework for Timetable Generation Using
Genetic Algorithm and Local Search , Al-Butana Journal of Applied Science (17): 31-53.



AL-BUTANA JOURNAL Of APPLIED SCIENCE
http// : ojs.abutana.edu.sd, ISSN: 1858-6616
Issue (17), December 2025, Page NO. 31-53

Z
S
N

i,
AN

n
°
3

Population

¥
Chromosome

T
I | | L

Students Room Course Day Lectur

Fig. 3. information encoded in the chromosome
3.3 Selection

The selection process enables the genetic algorithm (GA) to progressively evolve
toward an optimal solution by favoring chromosomes with higher fitness values
[10]. In this work, the tournament selection method is employed to determine
which individuals proceed to the next generation. Specifically, K timetables
(individuals) are randomly chosen from the population, and the one with the
highest fitness among them is selected as a parent. This procedure is repeated
until the required number of individuals has been selected. The tournament size K
Is a crucial parameter that can take values from 2 to P, where P denotes the total
number of individuals in the population.

3.4 Crossover

The crossover process performs recombination between pairs of selected
chromosomes to generate new offspring [11]. In this operation, a crossover point
is randomly determined, and genes after this point are swapped between the two
parent chromosomes, while genes before the crossover point remain unchanged.
Crossover is applied with a probability Pc to produce new children by exchanging
timeslot assignments between parent timetables and reassigning classrooms to
each non-empty timeslot.
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3.5 Mutation

The mutation process is applied to introduce randomness into the population and
expand the search space [12]. Mutation points are randomly selected with a
probability Pm As stated in [12], mutation is not applied to the best solution in
order to preserve elite individuals. In this implementation, for each gene in every
chromosome, a random number within the interval (0, 1) is generated. If the
generated value is less than Pm the corresponding gene value is replaced with a
randomly chosen timeslot, day, or classroom combination different from the
current one. Algorithm .3. Presents the pseudocode of the mutation process.
Algorithm .3. Pseudo Code for local search
Begin
Defined mutation rate.
For each gene {
Randomly select a number between 1 and 1000.
If the number is less than the mutation rate then {
Randomly select a gene from the current timetable
And swap it with the current gene.

1}
End

3.6.Repair Function
In this approach, after crossover and mutation operations are performed, the
produced chromosome may become infeasible or outside of the search space. To
deal with infeasible solutions we can remove, repair them or we can a apply a
high penalty in the fitness function, so that they are unlikely to survive [5].
Several studies have used repair process to deal with the infeasible chromosomes
which are generated during evolution process [9]. In this implementation we used
repair process to repair all of the infeasible chromosomes. The repair function is
implemented in four steps
Step 1: for every classroom find free timeslots, the input matrix is Infeasible
Course Timetable (ICT),

And the result (outputs) of the pseudo code illustrated in Algorithm.4. is a

(Free_Time_Room) matrix for every classroom.
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Algorithm. 4. Step-1 Repair function pseudo code
Input: ICT
Begin
/I Find timeslots used by each event based on room
Fori=0toi <R, where R is the number of rooms do
Ind < 0;
For j=0toj <N, where N is the number of events do
Assign timeslot used by each event to corresponding room
If ICT[j] [2] ==i then
Room Time[i] [Ind] « ICT[j];[1]
Ind < Ind + 1;
End if
End for
End for
// Find free time for each room
Fori=0toi<Rdo
Ind « 0;
Forj=0toj<T,where T is the number of timeslots do
// Search for free time for each room
If j is not a member in Room_Time[i] then
Free Time Room[i] [Ind] « j;
Ind « Ind + 1;
End if
End for
End for
End
Output: Free_Time_Room
Step 2: In this step, the algorithm determines the available timeslots for each
course. The input matrix is Course_Student, and the output of the pseudo code
shown in Algorithm 5. is the Free_Time_Event matrix for each lecture (event).
Step 3: This step identifies feasible timeslots for classrooms and lectures without
conflicts. The input matrices are Free_Time_Room from Step 1 and
Free_Time_Event from Step 2. The output of the pseudocode in Algorithm.6. is
the Feasible_Time matrix, which satisfies all hard constraints for every lecture
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Step 4: The final step repairs the Infeasible Course Timetable (ICT) to produce
an optimal schedule. The algorithm uses the Feasible_Time matrix generated in
Step 3 as input, and the output of the pseudocode in Algorithm. 7. is the Feasible
Course Timetable (FCT).
Algorithm 5. Step-2 Repair function pseudo code
Input: Event_StudentMatrix
begin
fori=0toi<N
for j = 11toj <M, where M is the number of students
If Event_Student[i][j] ==
Find students for each event, save in E_S matrix
end if
end for
end for
Fori=0toi<M
forj=0toj<N
If Event_Student[i] [j] ==
Find events for each student, save in S_E matrix
end if
end for
end for
Fori=0toi<N
forj=0toj<T
Find timeslots used by each event, save in IFTtime_Event
end for
end for
Fori=0toi<N
NS = Number of students needing Event i
from E_S matrix
forj=0toj<NS
Student = E_S[i] [j]
NE = Number of events for student j
/[ from S_E matrix
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fork=0to k <NE
TS = ICTTi] [K]
IFTime_Event[i] [TS] =1
end for
end for
end for
fori=0toi<N
forj=0toj<T
if IFTime_Event[i][j] ==
FreeTime_Event[i][Ind] =
Ind++
end if
end for
end for
end
Output: FreeTime_Event
Alorthims.6. Step-3 Repair function pseudo code
Input: FreeTime_Room, FreeTime_Event
begin
/[Find the intersects between free timeslots for rooms and events.
fori=0toi<N
ERoom = ICTTi][1];
FR_Time = FreeTime_Room[ERoom][ ];
FE_Time = FreeTime_Event[i][ ];
Feasible Time = FR _Time N FE_Time;
end for
end
Output: Feasible Time

Algorithm.7. Step-4 Repair function pseudo code
Input: Feasible_Time
begin
While ICT infeasible do
. fori=0toi<M
5 Abubakr H.Ombabi, Mohamed Babiker Ali, Mussab E.A Hamza, Abuzer H. |
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NE = Number of events for student i
fork =0to k <NE
If two events for student i have the same timeslot
Search inside Feasible Time[K] to
repair conflict inside ICT
end if
end for
end for
end while
end
Output: FCT — Feasible Course Timetable

3.7.Fitness Function
This function deals with the soft constraints. Each of the generated timetables is
assigned fitness value calculated form (2), this fitness value used by the algorithm
to evaluate how much the timetable violates the soft constraints which were
defined in the Problem formulation. Also it is used as a parameter by selection
process in subsection 4.3.

Min f(T) = XiZ1 XjecpjBj(t)  (2)

Where: T: Is the given timetable. C: Is a set of soft constraints. P: Penalty of
violating soft constraint j.
B: Is a Boolean function which returns value 1 if tuple ti violates constraint j, else
it returns 0.
In this implementation the algorithm selects timetables with minimum fitness
values, since minimum f(T) value means higher probability of being selected for
crossover, mutation, and survival ( better solution).

4. Results and Discussion

The proposed solution was implemented using Java IDE 8.1. Table 1 summarizes
the parameter values of the Genetic Algorithm (GA). The performance of the
algorithm reaches a stable solution after 50 iterations across five runs for each data
instance and terminates when no further improvement is observed in the generated
timetable. The output of this implementation is a timetable grid containing the
subject, professor, and student batch assigned to each timeslot. Any reallocation of
a professor consequently alters the order of the generated timetable. The algorithm
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begins by generating an initial population of 100 individuals. Successive
generations are formed by selecting individuals from the current population using
the tournament selection method. A random subset of courses in each individual is
chosen for mutation, after which a local search is applied. Improved solutions
resulting from the local search are retained in the population for subsequent
generations. The process continues until either the maximum number of
generations (1000) is reached or a zero-penalty timetable is obtained.

TABLE 1. GENETIC ALGORITHM PARAMETERS

Parameter Value
Generations number 1000
Population Size 100
Crossover Rate 0.5
Mutation Rate 0.04
Crossover Type Single Point
Selection Type Tournament selection

The proposed algorithm was applied five times to each problem instance listed in
Table 2.

Its performance was compared with two existing methods from the literature using
the same datasets. Our method achieved lower constraint violations in all cases,
indicating improved feasibility and solution quality. However, ties were observed
for the S3 dataset with A2, while Al (our method) and A2 failed on large data
instances, as illustrated in Table 3.

TABLE 2. COURSE TIMETABLE PROBLEM CATEGORIES

Category Small | Medium large

Number of courses N 90 150 200
Number of rooms R 3 5 8
Features F 2 2 2
Students groups M 5 8 10
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TABLE 3. FEASIBILITY RESULTS OF THE PROPOSED ALGORITHM

Data set Al A2 A3
sl 0 2 10
S2 0 3 9
s3 0 0 7
S4 0 4 17
S5 0 6 7
M1 221 372 243
M2 174 419 325
M3 230 350 249
M4 160 348 285
M5 125 171 132
L1 529 80% Fail 95% Fail

Al: Proposed method (Genetic Algorithm + Local Search). A2: Tabu Search
Hyper-Heuristic [10] A3: Fuzzy Approach by Asmuni [8].

5. Performance Summary

Table.4. summarizes the average constraint violations, standard deviation, and
success rate (SR) across five runs per dataset. Success rate is defined as the
proportion of runs producing feasible timetables (zero or near-zero violations).
Fig.4. illustrates the comparative performance of the three algorithms (Al, A2,
and A3) across different dataset sizes (Small, Medium, and Large). The proposed
method (A1) consistently achieves lower constraint violations, demonstrating its
superior feasibility and optimization efficiency compared to the Tabu Search (A2)
and Fuzzy Approach (A3). Fig.5. presents the failure rates observed for the three
methods across the same datasets. The proposed algorithm (Al) exhibits the
lowest failure rate, maintaining stable performance even in larger problem
instances, whereas A2 and A3 show a sharp increase in failure rates as data
complexity grows.
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TABLE 4. STATISTICAL ANALYSIS OF RESULTS
Dataset Avg. Violations  Std.  Success Rate

Category (A1) Dev. (%)
Small (S1-S5) 0.0 0.00 100
Medium (M1-

M) 182 45.3 80

Large (L1) 529 62.1 60

The results indicate that small instances were always solved optimally (no
violations). In medium datasets, the algorithm maintained feasibility with minimal
variation between runs, confirming robustness. Although large datasets remain
challenging, the GA still achieved a 60% success rate, significantly outperforming
A2 and A3, which frequently failed to converge.
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5.2 Impact of Local Search

Fig.3. and Fig.4. illustrate the convergence behavior with and without the local
search enhancement. With local search, convergence occurred 40 to 45% faster,
reducing the number of generations required for stable performance. This
improvement demonstrates that local search guides the algorithm efficiently
through the search space, leading to faster and more reliable timetable
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construction. For deep analysis and insight into computation power. As presented
in Table.5. the incorporation of local search clearly reduces both computational
time and violation count, confirming its importance in improving algorithmic
efficiency.

Table 5. Effect of Local Search on Algorithm Performance

Confiauration Avg. Generations Execution Average
g to Converge Time (s) Violations
Without Local 950 142 6 231
Search
With Local 550 89.4 182
Search

Overall, the experimental results show that the proposed GA with local search
efficiently handles different problem scales. It achieves: Zero violations in all
small datasets, Up to 40% reduction in violations for medium instances compared
to A2 and A3, Better scalability for large instances. Furthermore, the tournament
selection mechanism maintained population diversity, while single-point crossover
provided sufficient exploration of the search space.
These combined strategies ensured that the algorithm converged toward optimal
solutions without premature stagnation.
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Table 6. Example of Generated Feasible Timetable (FCT)

Timeslot Room 1 Room 2 Room 3
olg\g/-lg(r)]_ Data Structures (Dr. ~ Calculus Il (Dr. Sara/  Networking (Dr. Omar

10-00 Ali/ CS-B) ENG-A) [1T-A)

Mon : : : :

10:00— Algorithms (Dr. Lina/ Physics | (Dr. Ahmed/ Operating Systems (Dr.
12-00 CS-A) ENG-B) Huda / IT-B)
Tue : :

08:00— Database Systems Linear Algebra (Dr. Web Design (Dr.
10'_00 (Dr. Mona / CS-C) Nabil / ENG-A) Kamal / IT-A)

1;_ lé%_ Al Fundamentals (Dr.  Thermodynamics (Dr. ~ Data Communication
12'_00 Amal / CS-B) Rami / ENG-B) (Dr. Noor / IT-B)
Wed :

08:00— Software Eng. (Dr. ~ Mechanics (Dr. Reem/  Embedded Systems
10'_00 Sami / CS-A) ENG-C) (Dr. Tareq / IT-A)
Wed : : : : : :

10:00— Machine Learning Differential Equations Cybersecurity (Dr.
12'_00 (Dr. Lina/ CS-C) (Dr. Fadi / ENG-B) Yara/ IT-B)

The example in Table .6 illustrates a portion of the feasible course timetable
generated by the hybrid GA-local search algorithm. Each slot ensures that no
overlapping occurs between student groups, instructors, or rooms, thereby satisfying
all hard constraints. Soft constraint optimization was also evident, as room utilization
and timeslot balance were nearly uniform across all days. The resulting timetables
demonstrate both structural feasibility and practical deployment for academic
scheduling systems.

6. Conclusion

We proposed a hybrid approach combining a genetic algorithm with a local
search method to solve the university timetabling problem. A repair function was
incorporated to improve performance by transforming infeasible timetables into
feasible ones. The algorithms were implemented and evaluated on multiple datasets,
and the results indicate that the proposed UTTG algorithm outperforms baseline
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methods, achieving up to 15% improvement in solution quality and an average
execution accuracy of 96% across all problem instances. These results demonstrate
that the UTTG algorithm is both effective and robust. Future research may focus on
enhancing the efficiency of the local search component and developing advanced
genetic operators, such as refined selection and crossover mechanisms, to further
optimize scheduling performance. Moreover, extending the framework to address
more complex university examination scheduling problems represents a promising
direction for further study.
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